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Abstract

The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic
cells. It is deputed to lipid and protein biosynthesis, calcium storage, and the
detoxification of various exogenous and endogenous harmful compounds. ER
activity and size must be adapted rapidly to environmental and developmental
conditions or biosynthetic demand. This is achieved on induction of thoroughly
studied transcriptional/translational programs defined as “unfolded protein
responses” that increase the ER volume and the expression of ER-resident
proteins regulating the numerous ER functions. Less understood are the
lysosomal catabolic processes that maintain ER size at steady state, that
prevent excessive ER expansion during ER stresses, or that ensure return to
physiologic ER size during recovery from ER stresses. These catabolic
processes may also be activated to remove ER subdomains where
proteasome-resistant misfolded proteins or damaged lipids have been
segregated. Insights into these catabolic mechanisms have only recently
emerged with the identification of so-called ER-phagy receptors, which label
specific ER subdomains for selective lysosomal delivery for clearance. Here, in
eight chapters and one addendum, we comment on recent advances in ER
turnover pathways induced by ER stress, nutrient deprivation, misfolded
proteins, and live bacteria. We highlight the role of yeast (Atg39 and Atg40) and
mammalian (FAM134B, SEC62, RTN3, and CCPG1) ER-phagy receptors and
of autophagy genes in selective and non-selective catabolic processes that
regulate cellular proteostasis by controlling ER size, turnover, and function.
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The history behind regulated endoplasmic reticulum
turnover

The volume (and the activity) of the endoplasmic reticulum (ER)
can be expanded on demand. Activation of quiescent B cells
into antibody-producing plasma cells is a textbook example of
the daunting expansion of this biosynthetic organelle to accom-
modate and assist the maturation of a flood of cargo entering
the secretory pathway (in this specific case, thousands of immu-
noglobulin chains produced per second)'. In general terms, ER
expansion is one of the many cellular responses to ER stresses,
which collectively are defined as unfolded protein responses
(UPR). Logically, recovery of pre-stress homeostasis upon
ER stress resolution or cessation of drug (e.g. phenobarbital)
treatments requires dismantling of the excess ER and degrada-
tion of the ER chaperones produced during the stress phase’. It
is in these contexts that first indications of catabolic control of
ER size emerged’”. However, hints of lysosomal-regulated
ER turnover can be found in earlier literature (for example, in 6).
Selective ER turnover is a constitutive process that maintains
ER size in Eukarya. It can be enhanced or induced on micro-
tubule de-polymerization’ and, as described below, during ER
stress, during recovery from acute ER stress, on ER overload
with membrane or proteasome-resistant misfolded proteins,
under nutrient deprivation, or on pathogen attack. It relies on
intricate mechanisms that we are just starting to understand.

Yeast flavors of ER-phagy

Chapter one: the origin of a name. ER-phagy as ER stress-
induced microautophagy of the ER

The term ER-phagy is a contraction of the words “ER” and
“macroautophagy”. It was coined by the group of Peter Walter
to define the process of selective ER delivery (not of selec-
tive ER clearance) in the vacuole of yeast cells exposed to per-
turbation of the redox homeostasis to induce a UPR®. Initially,
ER-phagy was described as a conventional macroautophagic
pathway with autophagy genes alleviating cell growth defects
under ER stress conditions and regulating the engulfment of
ER fragments within double-membrane autophagosomes that
eventually fuse with vacuoles to clear their content®”. None of
these original findings survived the test of time. In fact, further
analyses by the same group revealed that neither autophagy
genes nor autophagosomes are actually involved in the vacuolar
delivery of excess ER upon perturbation of redox homeostasis
or play a role in the survival of yeast cells challenged with the
reducing agent dithiothreitol (DTT). Moreover, it turns out that
ER delivery to the vacuole under these experimental conditions
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does not result in ER clearance'” (Table 1). Rather, on chemical
UPR induction, excess ER membranes are delivered within
the vacuole by poorly understood micropinocytosis events.
Importantly, because DTT inactivates vacuolar activity, the ER
delivered into the vacuole under these experimental conditions
accumulates in the vacuolar lumen as ER whorls'". The path-
ways and the yeast genes regulating ER fragmentation, selec-
tive delivery of ER whorls within vacuoles (is it controlled
by ER-phagy receptors?), and capture of ER by microau-
tophagic invagination of the vacuolar membrane remain to be
identified.

Chapter two: membrane protein-induced macroautophagy
of the ER

Overexpression of integral membrane proteins is yet another
manner to activate/enhance delivery of ER to the yeast
vacuole'"">. This process is highly selective because endog-
enous markers of the ER membrane (Sec61 and Hmgl) but
not intrinsic or peripheral proteins of ER exit sites (Secl2 and
Sec13) or the luminal ER protein Kar2p are delivered to the
vacuole with the exogenous integral protein(s) to be cleared
from cells''. Membrane protein-induced delivery of ER material
to the yeast vacuole is under the control of Yptl (the orthologue
of mammalian RAB1) to generate ER-to-autophagy membrane
structures, of Ypt51 (Vps2) to promote fusion of ER membrane
proteins-containing structures with the vacuole, and of select
macroautophagy gene products (Atgl, Atg2, Atg8, Atg9, and
Atgll but not Atgl7, Atgl8, Atgl9, Atg32, and Atg36''; for
a description of the function of the various autophagy gene
products mentioned in this commentary, please refer to 13,14)
(Table 1). The role of Atg39 and Atg40 as ER-phagy receptors
in nutrient deprivation-induced yeast ER-phagy was published
subsequently (chapter three in this commentary and 15). To our
knowledge, a possible involvement of Atg39 or Atg40 (or both)
in membrane protein-induced selective macroautophagy remains
to be investigated.

Chapter three: nutrient deprivation-induced, receptor (Atg39
and Atg40)-mediated macroautophagy of the ER (and of
the nuclear envelope)

Nutrient deprivation and rapamycin are conventional activators
of macroautophagy'®. Like cell exposure to DTT'", these
experimental conditions enhance the delivery of ER frag-
ments within the yeast vacuole. However, as crucial differences
(compare with chapter one), vacuolar delivery eventually
results in ER clearance'™'” and relies on macroautophagy-like

Table 1. Yeast ER-phagy types and their requirements.

ER-phagy type (yeast) Receptor

Dithiothreitol-induced microER-phagy®'® Unknown
Membrane protein-induced macroER- Unknown
phagy"

Nutrient deprivation-induced/rapamycin- Atg39 or
induced ER-phagy ' Atg40

Unknown

Atg1, Atg2, Atg8, Atg9,
Atg11, Ypt1, Ypt51

Atg1, Atg8, Atg11,
Atg17, Ypt7, Pep4

Gene products required Gene products dispensable

Atg1, Atg7, Atg8, Atg16, Ego1, Ego3,
Vtc4, Nvj1, Pep4, Vps4, Vps23
Atg17, Atg18, Atg19, Atg32, Atg36

Unknown
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programs, where receptor-mediated engulfment of ER frag-
ments into double-membrane autophagosomes that eventually
fuse with lysosomes does indeed occur™'"'*. Atg39 spans the
perinuclear ER membrane and decorates it for capture by
autophagosomes and destruction. Instead, Atg40 is in the
peripheral ER membrane, where it co-localizes with Rtnl, a
marker of ER tubules and sheet edges, but not with the ER sheet
marker Sec63 and regulates the turnover of highly curved ER
subdomains (Figure 1). Atg39 and Atg40 contain an Atg8-
interacting motif (AIM) that bridges the ER membrane with the
phagophore membrane via Atg8 association. Moreover, Atg40
(and possibly Atg39) contains an Atgll1-binding region (11BR,
Figure 1) and harbors two transmembrane domains that have
some similarities with reticulon domains displayed by some
mammalian ER-phagy receptors (15, see below). These
domains supposedly curve the ER membrane to facilitate the
ER fragmentation required for engulfment by autophagosomes.
So far, it has been established that nutrient deprivation-induced,
Atg39- and Atg40-mediated macroautophagy of the yeast
nuclear envelope and ER requires Atgl (ULK1 in mammals),
Atg8 (LC3), Atgll and Atgl7, Ypt7 (RAB7, a small
GTPase required for autophagosome-vacuole fusion), and Pep4
(a vacuolar peptidase)'” (Table 1).

Mammalian flavors of ER-phagy

Chapter four: nutrient deprivation-induced, receptor
(FAM134B or RTN3)-mediated macroautophagy of the ER
As in yeast cells, starvation activates receptor-mediated engulf-
ment of mammalian ER fragments into double-membrane
autophagosomes that eventually fuse with lysosomes to clear
their cargo'””. The reticulon family members FAM134B and
RTN3 reside to the edges of ER sheets and ER tubuli, respectively
(Figure 1). FAMI134B was identified in a yeast two-hybrid
screen as a LC3/GABARAP interactor’”. RTN3 was found to
re-localize from ER tubuli to LC3-decorated structures on cell
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starvation”’. Upon oligomerization, FAM134B and RTN3 frag-
ment ER sheets and tubuli, respectively, and mediate the capture
of these ER subdomains by autophagosomes via their LC3-
interacting regions (LIRs). As such, different ER-phagy
receptors regulate the turnover of distinct populations of ER-
resident proteins, according to the subcompartmental distribution
of the latter in sheets (for example, CLIMP63 and RTN4B) or in
tubuli (RTN1, RTN3, REEPS5, and CNX). Since inactivation of
ER-phagy receptors causes ER expansion, ER turnover is a
constitutive process that also determines ER size at steady state.
So far, it has been established that nutrient deprivation-
induced, FAMI134B- and RTN3-mediated ER-phagy requires
BCNI, ATGS5, ATG7, LC3, and FIP200"* (Table 2).

Chapter five: receptor (SEC62)-mediated clearance of
excess ER on resolution of acute ER stresses (recovER-
phagy)

Pathologic (for example, expression of mutant polypeptides)
or physiologic (for example, B- to plasma-cell differentiation)
biosynthetic challenges may induce ER stresses that increase the
ER volume to almost entirely occupy the space delimited by the
plasma membrane (http://www.drjastrow.de/WAI/EM/EMRERE.
html). This can be recapitulated by challenging cells with
chemical compounds or by therapeutic interventions that perturb
ER homeostasis’'. Alleviation of the stress obtained on inter-
ruption of the challenge allows cells to re-establish pre-stress
homeostatic conditions by lysosomal clearance of the excess ER
membranes and proteins produced during the stress phase’™. This
catabolic process, defined as recovER-phagy (for ER-phagy-
mediated recovery from ER stresses’), is characterized by selec-
tive clearance of ER subdomains displaying the LC3-binding
protein and (recov)ER-phagy receptor SEC62 at the limiting
membrane’ (Figure 1). SEC62 plays a well-characterized role
as a component of the protein import machinery into the ER™.
Bioinformatics analyses revealed the presence of a LIR in the

Yeast Mammals
1
. AIM/LIR I TMD
{FIR § RHD
= 11BR 497 1 1
s 399
Cytosol
ER lumen
757
398
Atg39 Atg40 RTN3 FAM134B SEC62 CCPG1
Nuclear envelope ER tubuli ER sheets

Figure 1. Yeast and mammalian ER-phagy receptors. The figure shows the topology, orientation, and subcompartmental localization of
the two yeast ER-phagy receptors Atg39 and Atg40 and of the four mammalian ER-phagy receptors RTN3, CCPG1, FAM134B, and SEC62.
Numbers indicate amino acid residues and refer to the human version of the proteins for the mammalian ER-phagy receptors. 11BR, Atg11-
binding region; AIM, Atg8-interacting motif; ER, endoplasmic reticulum; FIR, FIP200-interacting region; LIR, LC3-interacting region; RHD,

reticulon-homology domain; TMD, transmembrane domain.
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Table 2. Mammalian ER-phagy types and their requirements.

ER-phagy type (mammalian) Receptor

Nutrient deprivation-induced FAM134B
ER-phagy'®* RTN3
Nutrient deprivation-induced/  CCPG1
ER stress-induced ER-phagy*
RecovER-phagy” SEC62
Microbial-induced ER-phagy”*  Unknown

cytosolic C-terminus of SEC62, which is conserved in higher
Eukarya but not in the yeast orthologue. LC3 binding to SEC62
has been mapped by docking and molecular dynamics simu-
lations and by solution nuclear magnetic resonance spectros-
copy. It has been confirmed by surface plasmon resonance and
peptide array and eventually in the living cell, where it proved
to be required for the delivery of ER fragments within LAMP1-
positive degradative organelles’. Proteomic analyses revealed
that the ER subdomains cleared by recovER-phagy do contain
several ER-resident molecular chaperones and enzymes (for
example, all members of the protein disulfide isomerase super-
family with the relevant exception of ERp44, which resides not in
the ER but in the intermediate compartment™) but are devoid of
other ER-resident proteins such as most ERAD regulators”. This
reveals a spatial separation of ER functions in ER subdomains.
So far, it has been established that SEC62-mediated recovER-
phagy requires ATGS5, ATG7, and LC3 (Table 2).

Chapter six: ER stress-induced receptor (CCPG1)-
mediated macroautophagy of the ER

CCPG1 is the new entry in the ER-phagy receptors clan.
It has been identified as an ER stress-induced interactor of
GABARAP and LC3%%, It is a single-pass, type II ER protein
that associates directly with FIP200 and indirectly with other
components of the ULK complex involved in autophagosome
biogenesis (that is, ULKI1, ATG13, and ATG101)* (Figure 1).
Ectopic expression of CCPG1 reduces the size of the periph-
eral ER and the cellular content of the peripheral/tubular ER
protein RTN3. Likewise, induction of endogenous CCPGI1
in cells challenged with the chemical ER stress inducer DTT
activates lysosomal depletion of peripheral ER. DTT induction
of yeast ER-phagy results in microautophagy-like vacuolar
capture of the ER, which does not require intervention of
autophagy gene products and does not lead to ER degrada-
tion (Chapter one'’). Thus, the mechanism of ER size control
in cells experiencing chemically induced ER stresses is poorly
conserved, if at all. Of note, FAM134B deficiency is linked to
human sensory neuropathy'’, whereas studies in mice reveal that
CCPGl1 deficiency causes injury of exocrine pancreas cells and
of chief cells of the gastric epithelium”. These differences reveal
poorly understood tissue-specific functions of the two ER-phagy

Gene products required Gene products

dispensable
BCN1, FIP200, ATG5, LC3 RTN3
FIP200, ATG5, ATG7, LC3 FAM134B
FIP200, ATG5, LC3 Unknown
ATG5, ATG7, LC3 Unknown
BCN1, FIP200, ATG7, FAM134B

ATG14, ATG16L1

receptors. CCPGl-mediated ER-phagy ATGS and

FIP200 (Table 2).

requires

Chapter seven: misfolded protein-induced macroautophagy
of the ER (ER quality control autophagy)

Most misfolded polypeptides produced in the ER are translo-
cated across the ER membrane and are degraded by cytosolic
26S proteasomes’’. However, the polymerogenic E342K (ATZ)
variant of the secretory protein alphal antitrypsin®~', the E90K
mutant of the gonadotropin-releasing hormone receptor
(GnRHR)™, aggregated B subunits of thyrotrophic hormone®,
procollagen™*, and dysferlin® are a few paradigmatic examples
of proteasome-resistant proteins generated in the ER and
degraded, at least in part, by the lysosomal system. For ATZ, the
involvement of classic autophagy regulators such as ATGS,
ATG7, and LC3 has been shown’'. However, for this and other
proteasome-resistant misfolded polypeptides such as GnRHR
and [ subunits of thyrotrophic hormone, the intervention of
classic (mTOR-dependent) macroautophagy pathways in clear-
ance is questionable. In fact, macroautophagy inducers such
as rapamycin and starvation do not enhance their lysosomal
disposal™*>% which seems to actually require vesicular
traffic from the ER to lysosomal degradative compartments®*.
In these cases, the autophagy genes involved in these catabolic
processes might intervene in an ill-defined, unconventional
manner. Even if/when conventional macroautophagy deter-
mines the clearance of proteasome-resistant misfolded proteins
generated in the ER lumen, it remains unclear whether these are
dislocated across the ER membrane and subsequently are cap-
tured by autophagosomes or whether autophagosomes capture
ER fragments containing aberrant protein aggregates to then fuse
to lysosomes’’. In the latter case, it remains to be established
how the autophagic machinery operating in the cytosol can
detect the accumulation in the ER lumen of proteasome-
resistant species to be removed from cells (see “Final remarks”).
All in all, the involvement of peculiar pathways (autophagy-
like or vesicular transport or both), of ER-resident sensors that
transmit the information from the ER lumen into the cytosol to
activate autophagy, and of ER-phagy receptors to promote the
catabolic process that removes the ER subdomain from cells
seems to be an educated guess.
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Chapter eight: microbial-induced ER-phagy
Cyclic-di-adenosine monophosphate is a signature of live Gram-
positive bacteria, which is detected by phagocytes to trigger a
protective ER stress response consisting of ER expansion and
chaperone gene upregulation. Subsequently, ER stress-induced
PERK phosphorylation correlates with mTORCI1 inactivation,
thus inducing macroautophagy, which is instrumental for cell
survival*. Isolation of autophagosomes from cells challenged
with live bacteria revealed the presence of several ER mark-
ers and the absence of markers of ERGIC, Golgi or lysosome,
showing that live bacteria induce selective ER-phagy. A role for
FAM134B as a receptor for microbial-induced ER-phagy has
been excluded. The involvement of other known ER-phagy
receptors has not been tested*. So far, it has been established
that microbial-induced ER-phagy requires ATG7, ATG14,
ATGI6L1, BCN1, and FIP200 (Table 2).

Promiscuous autophagic receptors in ER-phagy, an
addendum: the case of p62 and BNIP3

As originally reported for other drugs’™, withdrawal of hepatic
mitogens activates the removal of excess ER from liver cells,
which is ensured by macroautophagic processes. In these in vivo
experiments, ER turnover required ATGS5 and the general
autophagy receptor Sequestosomel/p62*. In contrast to conven-
tional ER-phagy receptors, which are located in the ER membrane
(Figure 1), p62 is a cytosolic protein that links ubiquitylated
proteins to be degraded to the autophagic machinery via LC3
interaction. It is therefore likely that p62 regulates the clear-
ance of ER regions displaying heavily ubiquitylated proteins at
the cytosolic face of the membrane. A second intriguing case of
promiscuous receptors involved in ER turnover is that of BNIP3,
which is anchored primarily in the outer mitochondrial mem-
brane via a C-terminal transmembrane domain®’. The BNIP3
homologue NIX/BNIP3L preferentially binds GABARAP*
and regulates the removal of damaged mitochondria*. BNIP3
selectively removes damaged mitochondria on association with
LC3B". The finding that a subfraction of cellular BNIP3 is
also found in the ER membrane led to the postulation that this
protein could play a role as an ER-phagy receptor*. This was
experimentally demonstrated only on ectopic expression of a
BNIP3 version modified for preferential delivery into the ER
membrane™.

Final remarks

Autophagy was once considered a rather unselective pathway
to deliver faulty material to lysosomes for clearance. Recent
studies reveal the specificity and sophistication of autophagic
programs and of programs relying on unconventional roles
of autophagy genes”. Organelles such as mitochondria,
peroxisomes, nucleus, and ER can selectively be delivered to
the lysosomal pathway for destruction if and when they display
receptors at the surface that engage this intricate catabolic
machinery®. These receptors are constitutively active, for
example, to control the size of the ER at steady state or in rest-
ing cells. They can be activated on demand to recover pre-
stress ER size and content or in response to accumulation in
specific ER subdomains of misfolded polypeptides that can-
not be handled by the ubiquitin proteasome system. The study of
ER-phagy actually reveals that not only organelles but also
specific (functional) subdomains of an organelle, with their
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content, can be selected for destruction. The field is young
and relies mostly on studies performed in cells exposed to
exogenous stimuli such as nutrient deprivation or chemical
stress that activate selective and non-selective ER-phagy and
have uncontrolled pleiotropic consequences on many unrelated
pathways*’. Intrinsic signals (that is, signals originating from
the membrane or the lumen of confined ER subcompartments
such as accumulation of proteasome-resistant polypeptides)
are predicted to activate highly specific, receptor-controlled
pathways relying on different autophagy, autophagy-like, or
autophagy-independent lysosomal pathways. We also pre-
dict that studies on ER turnover will lead to the identification of
ER sensors that, much like ER stress sensors, signal
accumulation of proteasome-resistant misfolded proteins or
other stressful situations that must be resolved by ER clear-
ance. Analysis of the available literature already shows that
ER-phagy comprises a series of mechanistically distinct proc-
esses that regulate the delivery of ER fragments or their luminal
content (or both) within vacuoles/lysosomes. It is proposed, but
in most cases not yet experimentally demonstrated, that these
catabolic processes regulate ER turnover, ER size, and clear-
ance of ER subdomains containing proteins and lipids that are
faulty or present in excess. Intriguingly, under some patho-
logic conditions (for example, in some serpinopathies’) or in
a subset of patients (for example, 10% of the ATZ patients that
show hepatotoxicity due to intracellular accumulation of ATZ
polymers’) or in response to severe chemically induced ER
stresses'"), the ER-derived material accumulates in autophago-
somes or in degradative organelles attesting defective
clearance. In other cases, accumulation of ER fragments in
degradative organelles occurs only on inactivation of lysosomal
hydrolases, rather hinting at a very efficient catabolic process
operating to protect cell and organism viability. Current models
show that ER fragments are captured by autophagosomes
as normally happens for cytosolic material. However, other
mechanisms of ER delivery to degradative organelles such as
vesicular transport can be envisioned on the basis of available
literature™*. Tt will be of great interest to study the involve-
ment of the several known autophagy genes in ER turnover
to understand why treatment with conventional autophagy
activators is beneficial for the clearance of cytosolic aggregates®
and for some (for example, pro-collagen and dysferlin**~) but
apparently not for other (for example, ATZ and the E90K mutant
of GnRHR)**#* proteasome-resistant misfolded polypeptides
generated in the ER lumen.
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